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Determination of the lattice susceptibility within the dual fermion method
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In this paper, we present the details of the dual fermion (DF) method to study the nonlocal corrections to the
single-site dynamical mean-field theory (DMFT). The DMFT two-particle Green’s function is calculated using
continuous-time quantum Monte Carlo method. The momentum dependence of the vertex function is analyzed
and its renormalization based on the Bethe-Salpeter equation is performed in the particle-hole channel. We
found magnetic instability for both the dual and the lattice fermions. Furthermore, the lattice fermion suscep-
tibility is calculated in this method and also in another recently proposed method, namely, dynamical vertex
approximation (DI'A). The comparisons between these two methods are presented in both weak- and strong-
coupling regions. Compared to the results from the quantum Monte Carlo calculation, the susceptibility ob-

tained from the DF and DI'A methods are satisfactory.
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I. INTRODUCTION

Strongly correlated electron systems, such as the heavy
fermion compounds and high-temperature superconductors,
have gained much attention from both theoretical and experi-
mental points of view. The competition between the kinetic
energy and fermion Coulomb interaction generates a lot of
fascinating phenomena. Many theoretical approaches have
been developed to understand the nature of the strongly cor-
related materials. The widely used perturbative methods,
such as random-phase approximation (RPA), fluctuation ex-
change (FLEX),'? and the two-particle self-consistent
(TPSC) (Refs. 3 and 4) method are based on the expansion in
the Coulomb interaction which are only valid for the weak-
coupling system. To go beyond the perturbative approxima-
tion and to gain insight of the correlation effects in the fer-
mion systems, new theoretical methods are needed.
Dynamical mean-field theory (DMFT) (Refs. 5-7) is a big
step forward in the understanding of metal-insulator transi-
tion.

Dynamical mean-field theory maps a many-body interact-
ing system on a lattice onto a single impurity embedded in a
noninteracting bath. Such mapping becomes exact in the
limit of infinite coordination number. All local and temporal
fluctuations are taken into account in this theory, and spatial
fluctuations are treated on the mean-field level. DMFT has
been proven a successful theory in describing the basic phys-
ics of the Mott-Hubbard transition. But the nonlocal correla-
tion effect cannot always be omitted. Although, the straight-
forward extensions of DMFT (Refs. 8—12) have captured the
influence of short-range correlations, these methods are not
capable of describing the collective behavior, e.g., spin-wave
excitations of many-body system. At the same time, most of
the numerically exact impurity solvers require a substantial
amount of time to achieve a desired accuracy even on a small
cluster, which makes the investigation of larger lattice hard.

Recently, some efforts have been made to take the spatial
fluctuations into account in different ways.!*!” These meth-
ods construct the nonlocal contributions to DMFT from the
local two-particle vertex. Self-energy function contains only
certain diagrams, which makes them only approximately in-
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clude the nonlocal corrections. Various cluster DMFT meth-
ods try to exactly incorporate the nonlocality within a small
reference system and treat the remaining correlations as
mean field. In contrast to cluster DMFT methods, the long-
range information is naturally included in these new methods
from their construction. Our calculations showed that in the
dual fermion method and the dynamical vertex
approximation'>!# such approximate momentum-dependent
self-energy and vertex function are normally sufficient to
generate reliable results compared to the numerically exact
calculations.

In this paper we apply the dual fermion (DF) method
proposed by Rubtsov et al.'* to consider the vertex renormal-
ization through the Bethe-Salpeter equation. We mainly fo-
cus on the lattice susceptibility calculation. We will show
that even with the simplest approximation of the DF self-
energy, the lattice susceptibility calculated from this method
nicely repeats the computationally expensive QMC results.
We will also extend another similar method proposed by Tos-
chi et al.'® to investigate the two-particle properties. The
discussion of relation and difference between these two
methods will also be presented.

The paper is organized as follows. In Sec. II we summa-
rize the basic idea of the DF method and present the details
of our calculation. The DMFT two-particle Green’s function
and the corresponding vertex calculation are implemented in
continuous-time quantum Monte Carlo (CT-QMC) in Sec.
III. The frequency dependent vertex is modified through the
Bethe-Salpeter equation to obtain the momentum depen-
dence in Sec. IV. In Sec. V we present the calculation of the
lattice susceptibility and compare it to QMC results. In Sec.
VI we extend the works of Toschi et al.'> to calculate the
lattice susceptibility and compare it to those from the DF
calculation. The conclusions are summarized in Sec. VIIL.

II. DF METHOD

We study the general one-band Hubbard model at two
dimension
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H=2, ek,UCZocko+ U N, (1)
k,o i

where C};T(c,m) creates (annihilates) an electron with spin o
and momentum k. The dispersion relation is €,=-2z(cos k,
+Cos ky). The basic idea of the DF method'* is to transform
the hopping between different sites into the coupling to an
auxiliary field f(f"). By doing so, each lattice site can be
viewed as an impurity. The interacting lattice problem is re-
duced to solving a multi-impurity problem which couples to
the auxiliary field. The impurity problem can be solved using
the standard DMFT calculation. After integrating out the lat-
tice fermions degrees of freedom c(c') one can obtain an
effective theory of the auxiliary variables, where DMFT two-
particle vertex function serves as the effective interaction. An
exact relation between the lattice Green’s function and the
DF Green’s function allows us to determine the lattice fer-
mion Green’s function from the latter.

To explicitly demonstrate the above idea we start from the
lattice action which can be written as

5[59 C] = 2 Simp - 2 (AV - ek)El(O'CkO" (2)
i k.o

where Sfmp is the action of an impurity coupling to a dynami-
cal bath described by A,. Applying the Gaussian identity to
the bilinear term, we decouple the lattice sites to a collection
of impurities which couple to an auxiliary field f(f):

S[e.c:ff]= 2 S+ 20 [87 Crafio+ Hee) + 8,74,
i ko

- &) frofrol)- (3)

The equivalence of Egs. (2) and (3) form an exact relation
between the Green’s function of the lattice electrons and the
DF

Gi=g,"(8,-€)Gi+(A,— )" 4)

This relation is easily derived by taking the derivative of the
two actions over €. Equation (4) allows us to solve the
many-body lattice problem basing on the single-site DMFT,
which is different from the straightforward cluster exten-
sions. The problem now is how to solve the DF Green’s
function GY. It is determined by integrating Eq. (3) over ¢

and ¢, which yields a Taylor expansion series in power of f

and f. The Grassmann integral ensures that f and f appear
only in pairs associated with the lattice fermion n-particle
vertex obtained from the single-site DMFT calculation. Up
to now, there is no any approximation involved in the con-
struction of the DF method. Basically, the perturbation ex-
pansion of the dual variables (auxiliary field) f contains all
possible combinations of the DF Green’s function and its
many-particle vertices. In this paper we restrict our consid-
erations to the two-particle vertex y“. Then the effective
action of the dual variables has the form

S[Ff1== 2 Feol GaOT o+ 2 VL. (5)
k,o i

The bare DF Green’s function Gg(k) is given as
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FIG. 1. The first two order DF self-energy diagrams. They are
composed of the local two-particle vertex function and the DF
propagator.

Gik) == g/[(A, - &) +g.]. ()
The effective interaction V(f,f) of the DF is

— 1- —
V(f’f) =- Zf(rlfzrz Y£:)234foxf04' (7)

Expanding the effective action (5) in ¥*) yields a Taylor
series which represents all possible combinations of the DF
Green’s function and %*. The second approximation of the
DF method is that only the first two order expansion terms
are taken into account. Higher order diagrams are expected
to be not important. Generally, this is not always true since
such weak-coupling expansion is not appropriate in the
strong-coupling region. But our calculation shows that the
first two order diagrams of the DF self-energy are the main
contributions of the nonlocal contribution to the single-site
DMFT.

These two diagrams are shown in Fig. 1. Diagram (a)
vanishes for the bare DF Green’s function since this diagram
exactly corresponds to the DMFT self-consistency condition.
Therefore the first nonlocal contribution is given by diagram
(b). The self-energies for these two diagrams are

T
3 W(ky) = " > Gk Yy (v vy, (8a)
O’I,kz
TZ
P =- > 2 Gl (k)GY (k)G (k)Y

IN* G
. (4)
X (Vl» vy, V3, V4) 704321
X(v4, V3102, 11) O sk, hytk, O 4 ryrgro, - (8D)

Here space-time notation is used k=(k, v), ¢g=(q, ). Fermi-
onic Matsubara frequency is v,=(2n+1)7/ and bosonic
frequency is w,,=2mm/ 3, where B is the inverse tempera-
ture. The full DF Green’s function is obtained from the
Dyson equation

(G =[Gy ] = 24(k). 9)

The algorithm of the whole calculation is:

(1) Set initial value of A, for the first DMFT loop.

(2) Determine the converged single-site DMFT Green’s
function g, from the hybridization function A,. The self-
consistency condition ensures that the first diagram of the DF
self-energy is zero.

(3) Go through the DMFT loop once again to calculate the
two-particle Green’s function and the corresponding y func-
tion. The method for determining the v function is imple-
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mented for both strong- and weak-coupling CT-QMC in the
next section of this paper.

(4) Start an inner loop calculation to determine the DF
Green’s function and in the end the lattice Green’s function.

(a) From Eqgs. (8a) and (8b) to calculate the DF self-
energy.

(b) The full DF Green’s function is given from the Dyson
Eq. (9).

(c) Tteratively solve Egs. (8a), (8b), and (9) until the con-
vergence of the DF Green’s function is achieved.

(d) The lattice Green’s function is then given by Eq. (4)
from that of the DF.

(5) Fourier transform the momentum lattice Green’s func-
tion into real space and determine a new hybridization func-
tion A, from the on-site lattice Green’s function Gj;.

(6) Go back to the step (3) and iteratively perform the
outer loop until the hybridization A, does not change any
more.

Although diagram (a) is exactly zero for the bare DF
Green’s function, it gives nonzero contribution to the DF
self-energy from the second loop where the DF Green’s
function is updated from Eq. (9). As a result, the hybridiza-
tion function should also be updated before the execution of
the next DMFT loop. This is simply done by setting the local
full DF Green’s function to zero, together with the condition
that the old hybridization function forces the bare local DF
Green’s function to be zero (£,G¢=0). We obtain a set of
equations

1
2 (G = (A0 = ) g (AT - €)° =0, (10a)
k

1
I—VE [G)— (A%~ &) 1g(A%! ~ €)*=0, (10b)
k
which yields
1
ATV — A% =~ K/E (Gou— GO(AM - )2 (11)
k

This equation finally gives us the relation between the new
and old hybridization functions
AN =AM+ G (12)
In the whole calculation, the DF perturbation calculation
converges quickly. The most time consuming part is the de-
termination of the two-particle Green’s function in DMFT.
The two-particle Green’s function y, . is a fully antisym-
metric function.!®!° One does not need to calculate y, o for
all the frequency points within the cutoff in Matsubara space,
only on a few special points X, , needs to be measured and
the values for the other frequency points are then given from
the solutions of those special points through the antisymmet-
ric property. Another acceleration is for the momentum sum
which always has a convolution type in our calculation; it
can be easily calculated by fast Fourier transform (FFT).

PHYSICAL REVIEW B 78, 195105 (2008)

III. CT-QMC AND TWO-PARTICLE VERTEX

From the above analysis, we know that the key idea of the
DF method is to construct the nonlocal contribution from the
auxiliary field and the DMFT two-particle Green’s function.
Therefore it is quite important to accurately determine the
two-particle vertex. Here we adapt the newly developed CT-
QMC method?*2? to calculate the two-particle Green’s func-
tion Y.

First we briefly outline the CT-QMC technique. For more
details, we refer the readers to Refs. 20-22. Here we focus
on the measurement of the two-particle Green’s function.
Two variants of the CT-QMC methods have been proposed
based on the diagrammatic expansion. Unlike the Hirsch-Fye
method, these methods do not have Trotter error and can
approach the low-temperature region relatively easily. In the
weak-coupling method®® the noninteracting part of the parti-
tion function is kept unchanged and the interaction term is
expanded as Taylor series. Wick’s theorem ensures that the
corresponding expansion can be written as a determinant at
each order

k
S -0
. k!

o G- )
oo T gy )00

where S, is the noninteracting action, G is the inverse Weiss
field, and the one-particle Green’s function is measured as

fd’rl ...di det[DTDl], (13)

with

G() =G() - éng M e 9G().  (15)
i.j

In the strong-coupling method the effective action is ex-
panded in the hybridization function by integrating out the
noninteracting bath degrees of freedom. Such an expansion
also yields a determinant

1
Z=Z> ;f dﬁ...dﬁ;J dr ... d7 (T ¢ (#)
ky Mo o

. B 1
xch(7) ... co(B)eh(zn] ] o

Ao’(ﬁ?ﬁ) AO’(T?’T]‘;O_)
XDet . (16)
A7) e A7)

The action is evaluated by Monte Carlo random walk in the
space of expansion order k. The corresponding hybridization
matrix changes in each accepted Monte Carlo update
step. One-particle Green’s function is measured as
G(7/—1})=M, ;, where M is the inverse matrix of the hybrid-
ization function which can be obtained by the fast-update
algorithm.?°

In the mean time a direct measurement of the Matsubara
frequency Green’s function is allowed
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1 s e
G(an) = EE e_anTiMl-’jeanTj' (17)
i

Compared to the imaginary time measurement, it seems
additional computational time is needed in order to sum up
every matrix elements M, ;. Haule*> proposed to implement
such measurement in every fast update procedure which only
requires linear amount of time. In the weak-coupling CT-
QMC we measured the Green’s function at each accepted
update step which greatly reduces the computational time.
The weak-coupling CT-QMC normally yields a higher per-
turbation order k than the strong-coupling CT-QMC.>* With
respect to the convergence speed, the weak-coupling CT-
QMC is comparable to the strong-coupling method under the
above implementation together with a proper choice of «,
since in strong-coupling CT-QMC more Monte Carlo steps
are usually required in order to smooth the noise of the
Green’s function at imaginary time around (/2 or at larger
Matsubara frequency points. Furthermore, the weak-coupling
CT-QMC is much easier implemented for large cluster
DMFT calculation, in which case the strong-coupling
method needs to handle a big eigenspace. In this paper we
mainly use the weak-coupling CT-QMC as impurity solver,
while all the results can be obtained equally in the strong-
coupling CT-QMC which was used as an accuracy check.

Similarly, we adapt Haule’s implementation to calculate
the two-particle Green’s function in frequency space. In the
weak-coupling CT-QMC, the noninteracting action has
Gaussian form which ensures the applicability of Wick’s
theorem for measuring the two-particle Green’s function

Xa'u”(vl > V2, V3, V4) = T[G(r( Vi, VZ)GU"(VS, V4)
- 600’G0(V1’V4)G0(V3’V2)]' (]8)

The overline indicates the Monte Carlo average. In each
Monte Carlo measurement step, G(v,v') depends on two
different arguments v and v’, only in the average level
G(v,v")=G(v)6,, is a function of single frequency. In each
fast-update procedure, the new and old G(v,v") have a close
relation which allows us to determine the updated Green’s
function G™¥(v, v’") from the old one G°(v,1"). Let us take
adding pair of kink as example. Suppose before updating the
perturbation order is k, then it is k+ 1 for the new M matrix.
The new inserted pair is at k+1 row and k+1 column. The
new and old two-frequency dependent Green’s functions re-
late with each other in the following way:

new

M
G™(v,v') = G (v, v') = —“/; LGOW){XL - XR

—XR 3 e—iV'Ti,Jrl _XL . eiV’TiH
+ e—ivri+1+iV'TZ+I}G0(Vr). (19)

Here, XL=3{ e™""L,, XR=3% |¢"'7IR;, and L;,R; have the
same definition as in Ref 20. In every MC step, one only
needs to calculate the Green’s function when the update is
accepted and only a few calculations are needed. A similar
procedure for removing pairs, shifting end-point operation
can be used. Such method is also applicable in the segment
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FIG. 2. §,=0 (ph0) and S,= =1 (phl) particle-hole channels of
the DF vertex; between vertices there are two full DF Green’s func-
tions. The S,= %1 component is the triplet channel, while that for
S.=0 can be either singlet or triplet.

representation of the strong-coupling CT-QMC. In the weak-
coupling CT-QMC, such an implementation greatly improves
the calculating speed in the low-temperature and strong-
interaction regime.?

Once one obtains the two-frequency dependent Green’s
function in every Monte Carlo step, the two-particle Green’s
function can be determined easily from Eq. (18). The two-
particle vertex is then given from the following equation:

) BAXZ (v, ) = Xo(v, )]
oo , ! — , 2()
Yo" ) 8o(Vg(V+ w)g, (V' + w)g (V') (20)

where

XB}(V’ V’) = T[‘Sw,ogo(v)go"(vr) - 50-0" 5V,V’ga-(V)go-(V+ (1))]
(1)

is the bare susceptibility. The multiparticle Green’s function
can also be constructed from the two-frequency dependent
Green’s function G(v,v’), but more terms appear from the
Wick’s theorem. Simply, by setting v=1v" the one-particle
Green’s function is obtained.

IV. MOMENTUM DEPENDENCE OF VERTEX

As mentioned earlier diagram (a) in Fig. 1 only gives the
local contribution. The first nonlocal correction in the DF
method is from diagram (b). Momentum dependence comes
into this theory through the bubblelike diagram between the
two vertices. The natural way to renormalize vertex is
through the Bethe-Salpeter equation. Since the DMFT vertex
is only a function of Matsubara frequency, the integral over
internal momentum ensures that the full vertex only depends
on the center of mass momentum ¢ or k’'—k. The Bethe-
Salpeter equations in the particle-hole channel'®!° are shown
in Fig. 2.

From the construction of the DF method, we know the
interaction of the DF comes from the two-particle vertex of
the lattice fermion which is obtained through the DMFT cal-
culation. In the Bethe-Salpeter equation, it plays the role as
building block. The corresponding Bethe-Salpeter equations
for these two channels are
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’ ’ T '
200 (k) = 07 (k') = = 2 ¥ (k. K)
Nk!!o_/! q

X Gd(k//)Gd(k// + q) th(),a’"u’/ (k”, k/) ,
(22a)

foxea foxoa T oo ’
IOk k+ q) = ¥ (ko +q) — J—VE Y7 ke k+q')
q/

XGUk+q")GUk' +q")

XTIk + gk +q). (22b)

Here, the short hand notation of spin configuration is used.
Y77 represents y7°° 7, while 7777 is denoted by 377,
where g=—c. TP are the full vertices in the S.=0 and
S,=*1 channels, respectively. G? is the full DF Green’s
function obtained from Sec. II which is kept unchanged in
solving the Bethe-Salpeter equation. We solve the above
equations directly in momentum space with the advantage
that in this way we can calculate the susceptibility for any
specific center of mass momentum ¢ and it is convenient to
use FFT for investigating larger lattice. In the above Bethe-
Salpeter equations, we used the general form of the vertex
function 7y which depends on both frequency and momen-
tum. But in the DF method, 7 is only a function of frequency

which means 'y;""(k,k')=yg"'(v,v’). This leads to the fact
that the full vertex calculated through the Bethe-Salpeter
equation is a function of single transfer momentum. The cen-
ter of mass momentum in the §,=0 and S,= = 1 channels are
q and k' —k, respectively.

In Eq. (22) one has to sum up the internal spin indices in
the S,=0 channel which is not present in S,= =1 channel.
One can decouple the S,=0 channel into the charge and spin
COmponents ¥ ="+ 7~ 7 which can be solved separately,
and the spin channel vertex function is exactly same as the
vertex in S,= = 1 channel (see, e.g., Ref. 19). This relation is
true for the DMFT vertex and was also verified for the mo-
mentum dependent vertex in the DF method.?®

Once the converged momentum dependent DF vertex is
obtained, one can determine the corresponding DF suscepti-
bility in the standard way by attaching four Green’s functions
to the DF vertex

) 7’
X537 (q) = x3q) + ]@E GGk +q)
k,k’

XTI ()G, (k") G2 (k' +q). (23)

The momentum sum over k and k’ can be performed inde-
pendently by FFT, since the DF vertex ' (¢) only depends
on the center of mass momentum q.

Now the z-component DF spin susceptibility (S¢-S%)
=2(x!'=x!') can be determined from the spin channel com-
ponent calculated above. In Fig. 3, ¥**=x%—x§ is shown for
U/t=4 at temperatures Br=4.0 (left panel) and Br=1.0 (right
panel). The momentum q, and q, run from O to 27. The
susceptibility strongly peaks at wave vector (7, 7) and the
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FIG. 3. (Color online) The nontrivial part of the DF spin sus-
ceptibilities as a function of momentum in 2D Hubbard model
for U/t=4.0, Br=1.0 (right panel), and Br=4.0 (left panel). Here
32X 32 momentum points are used in the first Brillouin zone.

peak value becomes larger with the lowering of temperature.
The magnetic instability of the DF system is indicated by the
enhancement of the DF susceptibility at (7, 7). The effect of
momentum dependence in vertex is clearly visible in this
diagram. The bare vertex which is only a function of fre-
quency becomes momentum dependent through the Bethe-
Salpeter equation. Later on we will see that such momentum
dependent vertex plays a very important role in the calcula-
tion of the lattice fermion susceptibility. Note in this diagram
only the nontrivial DF spin susceptibility )y is shown, where
the minimum locates at (7r,0) and (0, ). The minimum of
the full DF susceptibility y still locates at g=(0,0).

V. LATTICE SUSCEPTIBILITY IN THE DF METHOD

The strong antiferromagnetic fluctuation in two-
dimensional (2D) system is indicated by the enhancement of
the DF susceptibility at the wave vector (77, 7r) shown in Fig.
3. This is the consequence of the deep relation between the
Green’s function of the lattice and the DF [see Eq. (4)]. In
order to observe the magnetic instability of the lattice fer-
mion directly, we calculated the lattice susceptibility based
on the DF method. By differentiating the partition function in
Egs. (2) and (3) twice over the Kinetic term, we obtain an
exact relation between the susceptibility of the DF and lattice
fermions. After some simplifications,? it is given by

, T2 ) .
X7 (@) = xX0q) + — 2 GGk
' NT

+ QT ()G (KNG, (K +q).  (24)

Here G’ cannot be interpreted as a particle propagator. It is
defined as

Go(k)
glA,— k)]’

Again, the sum is performed over internal momentum and
frequency k,k" which is performed by FFT and rough sum-
ming up a few Matsubara points. As in Eq. (4), this equation
established a connection between the lattice susceptibility
and the DF susceptibility. From this point of view, it is easy
to understand that the instability in the DF will lead to the
instability in the lattice fermions.

G (k) = (25)
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FIG. 4. (Color online) The uniform spin susceptibility of the DF
calculated from the bare vertex (only frequency dependent) and the
full vertex (vertex from the Bethe-Salpeter equation) for half-filled
2D Hubbard model at U/t=4.0 and various temperatures. These
results basically reproduce the finite-size QMC solution.

One can also find relations for the multiparticle Green’s
function between the DF and the lattice fermions in the same
way. This emphasizes the similar nature of the DF and lattice
fermions except that DF possesses only nonlocal informa-
tion, since the DMFT self-consistency ensures that the local
DF Green’s function is exactly zero.

In this paper, we used two different ways to calculate the
lattice susceptibility Xm(CI)=2(X;'T— X;-L). First we used the
bare vertex 752*)(1/,1/’) which is obtained from the DMFT
calculation. In contrast, the second calculation was per-
formed using the full DF vertex in the spin channel
I’y ,(v,v"). In both calculations, the full one-particle DF
Green’s function was used. The momentum dependent DF
vertex is obtained through the calculation of the Bethe-
Salpeter equation. By comparing these two calculations, we
can understand the effect of the momentum dependence of
the DF vertex. The solution of the lattice susceptibility is
expected to be improved by using the momentum dependent
DF vertex.

In Fig. 4 we plotted the results for the uniform suscepti-
bility x,,-0(0,0) by using both the bare and the full DF ver-
tices. The lattice QMC result?’ is shown for comparison. The
calculation is performed at U/f=4.0. The momentum sum is

6 I I , . T T T
: DF(y*) =
| : DF([g) =
.. 4x4QMC —=—
= 4T |
€
X2+ ooy
1 I T ""::,::: ----

00.2 03 04 05 06 0.7 08 09 1.0
Th

FIG. 5. (Color online) Uniform spin susceptibility at wave vec-
tor (7, 7). The QMC results are obtained from Ref. 2.
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FIG. 6. (Color online) Momentum dependence of the spin sus-
ceptibility x(gq) at Bt=2.0, U/t=4.0. The trajectory of ¢ is shown in
the inset.

approximated over 32 X 32 points here. Both of these calcu-
lations reproduce the well-known Curie-Weiss law behavior.
Surprisingly enough, by using the bare vertex we obtained
the results which coincide with the QMC results better. We
attribute it to the finite-size effect of QMC.2” Moreo?’
showed that y becomes smaller with the increase in the clus-
ter size N. The 4 X4 cluster calculation result for the same
parameter locates above the solutions from 8 X 8 cluster cal-
culation. Hence the results obtained from the full vertex cal-
culation are expected to be more reasonable.

The importance of the momentum dependence of the DF
vertex is more clearly observed in the calculation of
Xm(7,m) shown in Fig. 5. Again, in this diagram QMC
results” are shown for comparison. The same parameters are
used as in Fig. 4. The results from the DF calculation with
bare vertex do not reproduce the QMC solution. Even more
serious, with the decrease in temperature the deviation be-
comes larger. In contrast, the calculation with the momentum
dependent vertex gives a satisfactory solution. This shows
the importance of the momentum dependence in the DF ver-
tex function.

Figure 6 shows the momentum evolution of y for fixed
transfer frequency w,,=0. The path in momentum space is
shown in the inset. From this diagram we can see that y,,(q)
reaches its maximum value at wave vector q=(, 7). Figure
7 shows the momentum evolution of the lattice susceptibility
for U/t=4.0 and inverse temperatures Bt=1.0,4.0. The in-

(a) Bt=4.0 (b) pt=1.0
14.0 |
12.0 + \
10.0 | xa
8.0 I \!\\u
6.0 - /m‘\
4.0+ 0
20 A
0.0 .
27, 2m)
B
(0,0 q (0,0
q y

X (2m,0)

FIG. 7. (Color online) The lattice susceptibility for U/t=4.0 at
two different temperatures Br=4.0 and Br=1.0 as a function of
momentum calculated on 32 X 32 lattice.
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creasing peak value at wave vector q=(r, ) indicates the
formation of the antiferromagnetic order with the lowering
of temperature. Compared to the nontrivial part of the DF
susceptibility shown in Fig. 4, we can see that although the
DF is not a real particle, it has similar nature as the lattice
fermion. The magnetic instability appears in both the DF and
the lattice fermion. The difference of the DF and the lattice
fermion lies in the absence of local property in DF.

In summary, the comparison between the DF and QMC
results shows the good performance of the DF method. Our
calculation was carried out within 4 h for each value of tem-
perature on average. In this sense, this method is cheap and
reliable compared to the more computationally intensive lat-
tice QMC calculation. Although we did self-consistent cal-
culations in this paper (see Sec. II) under the current con-
struction of the DF method, it is still possible to improve it.
The full DF Green’s function is calculated from the first two
self-energy diagrams shown in Fig. 1 and kept unchanged in
the calculation of the Bethe-Salpeter equations. This is not
self-consistent indeed in the sense that the momentum de-
pendent vertex (calculated from the Bethe-Salpeter equation)
does not come into the calculation of the full DF Green’s
function. In the end the determination of the full vertex is not
fully self-consistent. The better way is to consider the ladder
approximation of the DF self-energy which can determine
the DF Green’s function and the full vertex on equal footing.
It is called ladder dual fermion approximation (LDFA), in
which the DF Green’s function is determined from the full
vertex and used to calculate the new full vertex in the next
iteration. This loop is executed until the full DF Green’s
function and vertex do not change anymore. This approxima-
tion will improve the calculations for both the DF Green’s
function and the full vertex, especially for the one-
dimensional (1D) Hubbard model where the single-site
DMFT+DF calculation did not give the satisfied results.?®
More details and corresponding results will be presented
elsewhere.

VI. LATTICE SUSCEPTIBILITY IN DI'A

Similar as the DF method, dynamical vertex approxima-
tion (DI'A) (Ref. 13) also bases on the two-particle local
vertex. It deals with the lattice fermion directly without in-
troducing any auxiliary field. The perturbative nature of this
method ensures its validity at weak-coupling regime. Unlike
in the DF method, DI'A takes the irreducible two-particle
local vertex as building-block

‘}/c_(l.s)(v’ V’ ,(1)) = ’}/;(ls),ir(v’ V, ,(1)) - X()(V; (1)) 51/,1/' 5 (263)

Loy v'39) = Yoy ul(va v s 0) = xo(v:9) 6,0 (26b)

The spin and charge vertices are defined as y.,)=y'T = y'\.
Note that we used a different definition of the spin and
charge channels which is opposite to that in reference.!> We
will follow the work of Toschi et al.'® to determine the non-
local self-energy function and then to calculate the lattice
susceptibility.

The bare susceptibility is defined as

PHYSICAL REVIEW B 78, 195105 (2008)

Xo(V;0) == TG, (V)G (Vv + @), (27a)

Xo(rd) = %E WGk +q), (27b)
k

and the self-energy is calculated through the standard
Schwinger-Dyson equation

2
S(k)=— U}%E L ik,k";9)GO(k" )G (k" + )G (k + q).
k'.q
(28)

Here, the full vertex Ff(k,k’ ;q) is obtained by summing up
all the channel dependent vertices and subtracting the double
counted diagrams

1
Tylk'3q) = ABT(v,39) = Ty(3,059)]

-[F(wv ;o) = T(vv o)}, (29)

which depends only on one momentum argument ¢. The
one-particle propagator is given by the DMFT lattice
Green’s function where the self-energy is purely local
GO%k)=1/[iv—e(k)=2(v)]. The lattice Green’s function is
then given from the Dyson equation G‘1=G61 —3. The lat-
tice spin susceptibility within the DI'A method is obtained
by attaching four Green’s functions on the vertex obtained in
Eq. (26)

X(@) = x0(q) + 2 X )T (v, ;) x0(v.q).  (30)

’
vV

To construct the bare susceptibility xo(g) and xq(v,q), we
have two possible choices of the lattice Green’s function.
One is the DMFT lattice Green’s function G. The other one
is the Green’s function G constructed by the nonlocal self-
energy from the Dyson equation. In fact, the former is the
way to determine the DMFT lattice susceptibility, which is
not related with DI'A [Eq. (29)].

Before presenting the numerical results of the lattice sus-
ceptibility in DI'A, we take a deeper look at the analysis of
Eq. (26)

Loy 19) = v (n v 0) = [xo(vi9) — xo(vi )18, .
(31)

The second term in the brackets on right hand side removes
the local term from the bare susceptibility. The whole term in
the brackets then represents only the nonlocal bare suscepti-
bility. In order to compare to the DF method, we take the
inverse form of Eq. (22)

- ! — ’ r
I (wv'1q) = vy (v o) + sz GGk +q).
k

(32)

The above two equations are the same except for the last
term. Since the local DF Green’s function Gﬁ)c is zero, the
bare DF susceptibility is purely nonlocal which coincides

with the analysis of DI'’A Bethe-Salpeter equation. There-
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FIG. 8. (Color online) Comparison with the DI'A susceptibili-
ties x(0,0) which were obtained from both the DMFT lattice
Green’s function [DI'A (GY)] and the full Green’s function [DI'A
(G)] (see context for more details).

fore, it will be not surprising if these two methods generate
similar results. It is not easy to perform a term to term com-
parison between the DF method and DI'A although the bare
susceptibilities have no local term in both of these methods.
The one-particle Green’s functions have different meanings
in these two methods.

In Figs. 8 and 10, we presented the DI'A lattice suscepti-
bility calculated from both the DMFT lattice Green’s func-
tion [labeled as DI'A(G®)] and the full Green’s function [la-
beled as DI'A(G)]. The DF result from the calculation with
the full DF vertex is replotted for comparison. In Fig. 8, the
DI'A susceptibility calculated from the DMFT Green'’s func-
tion [DT'A(G")] is basically the same as the DF susceptibility
only with some small deviations. The solutions for
T/t>1.0 which are not shown here nicely repeat the DF and
QMC results. The deviation between the DI'A and the DF
method becomes smaller with the increase in temperature.
The DI'A susceptibility calculated from the full Green’s
function [DI'A(G)] shows a different behavior at low-
temperature regime which reaches its maximum value at
T/t=0.36. The Hubbard model at strong-coupling regime
can be mapped to the Heisenberg model; y reaches a maxi-
mum at 7= J, where J is the effective spin coupling constant
given as 412/ U. In order to investigate the behavior of x(0,0)
in the strong-coupling region, we further calculated the lat-
tice susceptibility at U/¢=10.0 which is shown in Fig. 9.

When the temperature is greater than 0.4, the DF method
and DI'A [DI'A(G)] generate similar results compared to
the QMC calculation. When the temperature is further de-
creased, the QMC susceptibility drops and peaks at 0.4
which coincides with the behavior of the Heisenberg model.
The DF and the DI'A(G°) susceptibility continuously grow
up with the decrease in temperature. Although the DI'A with
the full Green’s function [DI'A(G)] shows a peak, it locates
at T/1=0.66 which is larger than J. Moreover, DI'A(G) gen-
erates a large deviation from that of QMC. In this diagram,
we only show the results for the DF approach at 7/¢>0.3
and for DI'A at T/t>0.4. The Bethe-Salpeter equation of the
DF and DI'A methods has an eigenvalue approaching one
when further lowering the temperature, which makes the ac-
cess of lower temperature region hard. Figure 10 shows the

1.4 T T T T T T

DrA(G) -
i _ DrA (G o |]

12f  Ut=100 DR
s10l  , ee.s.  l4x4QMC oo ||
08 ]
>3 . L \\\E
0.6 = =
0.4 -
0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0
Th

FIG. 9. (Color online) The comparison of the DF results and that
of QMC for the uniform susceptibility at U/r=10. 4 X4 QMC re-
sults (Ref. 27) also show the error bars.

results of DI'A susceptibilities at wave vector (7, ) for
U/t=4.0 which is in the weak-coupling region. In contrast to
the comparison for x(0,0) results, the DI'A susceptibility
calculated from the full Green’s function DI'A (G) shows
better agreement with the DF results. The deviation of
DI'A(G®) becomes larger at lower temperature regime.

The strange behavior of the DI'A lattice susceptibility cal-
culated from the full Green’s function [DI'A(G)] at
q=(0,0) can be partially attributed to the non-self-
consistency introduced in this method. The full vertex is cal-
culated through the Bethe-Salpeter Eq. (26) by using the
DMEFT lattice Green’s function G°, while the four Green’s
functions attaching on this vertex are the full one. The better
way is to determine the full vertex self-consistently from the
corresponding full Green’s function. Such non-self-
consistent calculation might be one reason responsible for
the unreasonable results at low-temperature region. The in-
troduction of a Moriyaesque N correction’>* to DI'A will
further improve the performance of this method.

In both the DF method and the DI'A, the operation of
inverting large matrices is required for solving the Bethe-
Salpeter equation. Figure 11 shows the leading eigenvalue of
Egs. (22) and (26). As expected, the leading eigenvalue ap-

DIA G)
DrA (G% = [
it DF(T) —a-
T |a:
S = 4
<
I ‘ Ut=4.0 :

ud

3 04 05 06 07 08 09 1.0
Th

FIG. 10. (Color online) DI'A susceptibilities x(r,) at U/t
=4.0. The susceptibility are determined from both of the DMFT and
full lattice Green’s function together with the vertex obtained from
Eq. (29).
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FIG. 11. (Color online) The evolution of maximum eigenvalue
in spin channel against temperature for the DF method and the
DI'A.

proaches one with decreasing temperature which directly in-
dicates the magnetic instability of 2D system. The eigenval-
ues corresponding to the DF method always lie below of that
from DI'A indicating the better convergence of the DF
method. When the leading eigenvalues are close to 1, the
matrix inversion in Egs. (22) and (26) are ill defined, which
prevents the investigation at very low temperature. The
smaller values of the DF leading eigenvalue also indicate the
effectively weak-coupling nature of the DF which will be
discussed more detailed elsewhere.

We also calculated the uniform susceptibility at away
half-filling. In the strong-coupling limit, the Hubbard model
is equivalent to the Heisenberg model with coupling constant
J=41*/U. The consequence of doping is to effectively de-
crease the coupling J, which yields the increasing behavior
of x with doping. The finite-size QMC calculation?’3! ob-
served a slightly increasing y with very small doping at
strong interaction or in the low-temperature region. Here, we
did a similar calculation at Bt=2.5 and U/t=4,10. Since the
DF method and the DI'A do not suffer from the finite-size
problem, we would expect to observe the similar behavior of
the susceptibility in these two methods. In DI'A the suscep-
tibility was calculated from the DMFT Green’s function G°
and the vertex obtained from Eq. (29). As shown in Fig. 12 at
U/t=4.0 the susceptibility y slightly increases in the weak
doping region where ¢ is around 0.05. DF results clearly
show such behavior; DI'A(GY) also gave a signal of it. Fur-
ther doping the system, both the DI'A(G) and the DF sus-
ceptibility decrease which coincides with the QMC calcula-
tion. With the increase in the interaction, we would expect to
see the enhancement of this effect. However our calculation
indicates that such increasing-decreasing behavior disappears
at strong-coupling and low-temperature regimes. Both the
DI'A and the DF methods give the same decreasing curve

PHYSICAL REVIEW B 78, 195105 (2008)
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FIG. 12. (Color online) Uniform magnetic susceptibility is plot-
ted as a function of doping at Bt=2.5 and U/t=4.0,10.0.

which contradict to QMC result.”’ The results will most
likely be further improved by including the higher order
vertex or performing the cluster DMFT+DF/DI'A
calculations.?®

VII. CONCLUSION

In this paper, we extended both the DF and DI'A methods
to calculate the lattice susceptibility. The full vertices of the
dual and the lattice fermions are calculated through the
Bethe-Salpeter equations in the particle-hole channels. The
magnetic instability appeared in both the DF and real fermi-
ons. The lattice spin susceptibility calculated from both
methods gave satisfied results compared to QMC calculation
at U/t=4.0. The DF method generated large corrections to
DMFT for the lattice susceptibility at wave vector q
=(m,m). The DI'A did not generate equally good results for
the lattice susceptibility at q=(0,0) and (, ). Although
they are supposed to be weak-coupling methods, at U/t
=10.0 these two methods generated reliable results at high-
temperature region, while both of them failed to reproduce
the Heisenberg physics. We expect this will be cured by
LDFA and the cluster DMFT+DF/DI'A calculations. The
DF method always generates smaller eigenvalues indicating
the better convergence. The implementation of DF method in
momentum space greatly improves the calculational speed
and makes it easier to deal with larger size lattice.
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